DoD Lung Cancer Research Program (LCRP)

Each year, the Department of Defense’s office of the Congressionally Directed Medical Research Programs (CDMRP) assesses scientific opportunities to advance research in specific areas. The investigators supported by individual programs are making significant progress against targeted diseases, conditions, and injuries. This list is not intended to be a full representation of accomplishments, but rather a sampling of the broad portfolio of research and advances resulting from congressional appropriations.

<table>
<thead>
<tr>
<th>Year</th>
<th>LCRP Research Contributions</th>
<th>Additional Information and Hyperlinks</th>
</tr>
</thead>
</table>
| 2009 | Dr. Chris Moskaluk and colleagues established the first national early lung cancer biospecimen repository (Lung Cancer Biospecimen Resource Network [LCBRN]). | • [LCRP Research Highlight](#)
• [Lung Cancer Biospecimen Resource Network](#) |
| 2009 | Dr. Nouri Neamati identified several novel CXCR2 inhibitors that selectively inhibited NSCLC cell progression and arrested cells in the G0/G1 phase. These compounds are being investigated further as a potential treatment for chronic obstructive pulmonary disease (COPD) and lung cancer. | • Ha H and Neamati N. 2014. Pyrimidine-based compounds modulate CXCR2-mediated signaling and receptor turnover. *Mol Pharm* 11(7): 2431-41.
| 2009 | Drs. Samir Hanash, Adi Gazdar, Stephen Lam, and David Gandara collaborated to successfully identify a number of potential screening biomarkers and established collaborations that have resulted in significant new projects in the lung cancer field. This includes a large, prospective clinical trial (Biospecimen Banking and Biomarker Validation for Lung Cancer Early Detection in Cohort Receiving Low Dose Helical Computed Tomography Screening), aimed at validating biomarker panels for early lung cancer detection; and another multi-institutional Patient-Centered Outcomes Research Institute grant. The biomarkers are being pursued and show significant promise as diagnostic biomarkers for the early detection of lung cancer. | • Taguchi A, Hanash S, et al. 2013. Circulating pro-surfactant protein B as a risk biomarker for lung cancer. *Cancer Epidemiol Biomarkers Prev* 22(10):1756-61.
| 2010 | Dr. Avrum Spira, Dr. Peter Schnall, and colleagues established the Detection of Early Lung Cancer Among Military Personnel (DECAPM) clinical consortium, seeking to improve the process of diagnosing individuals at high risk of developing lung cancer. | • [LCRP Research Highlight](#)
• [Detection of Early Lung Cancer Among Military Personnel](#) |
| 2011 | Dr. Jing Chen demonstrated that tyrosine 26 phosphorylation of the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), a common occurrence in cancer cells, provides a metabolic advantage to cancer cell proliferation and tumor growth. Translational studies using a recently developed novel PGAM1 inhibitor (PGMI-004A) exhibit promising efficacy and minimal toxicity. | • [LCRP Research Highlight](#)
<table>
<thead>
<tr>
<th>Year</th>
<th>LCRP Research Contributions</th>
<th>Additional Information and Hyperlinks</th>
</tr>
</thead>
</table>
| 2011 | Dr. Pier Scaglioni demonstrated that pharmacologic inhibition of focal adhesion kinase (FAK) in mutant K-RAS lung cancers with mutations in INK4a/ARF or p53 significantly reduces the viability and survival of these cancer cells. These findings led to a multicenter Phase 2 clinical trial of defactinib, a potent inhibitor of FAK, to treat K-RAS-mutated NSCLC patients. | • LCRP Research Highlight
| 2011 | Dr. Maximilian Diehn developed a non-invasive method, dubbed Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq), for isolating and detecting rare, cancer-associated mutations in circulating DNA from blood to measure disease burden. Researchers are now working toward clinical trials to see whether CAPP-Seq can improve patient outcomes and decrease costs. This technology may be applicable across all cancers. | • LCRP Research Highlight
| 2011 | Dr. Prasad Adusumilli demonstrated that mesothelin is a good biomarker for aggressive K-Ras and EGFR mutant, metastasizing tumors, and developed an immunotherapy (CAR-T cell) for lung adenocarcinoma patients with mesothelin-expressing tumor cells. This work led to a clinical trial of mesothelin-targeted CAR-T cells to determine the efficacy, safety, and outcomes of this immunotherapy for patients with mesothelioma, lung cancer, or breast cancer. | • LCRP Research Highlight
| 2011 | Dr. Dingcheng Gao developed a successful animal model of the epithelial-to-mesenchymal transition (EMT), which allows scientists to visualize the epithelial-to-mesenchymal transition. Using this model, he determined that untransitioned epithelial cells are responsible for many metastases (contrary to previous hypotheses), but cells that have undergone EMT confer therapy resistance and make up most metastatic tumors post-chemotherapy. | • Fischer KR, Durrans A, et al. 2015. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527(7579):472-6. |
| 2012 | Dr. Jeffrey Engelman utilized patient-derived resistant lung cancer cell lines to identify drug candidates and combinations effective against drug-resistant lung cancers. The NCI Cancer Therapy Evaluation Program is sponsoring a clinical trial based on these results, which will investigate the effectiveness of combining a BCL-2 inhibitor with an EGFR inhibitor in treating lung cancer patients harboring T790M EGF mutations. | • LCRP Research Highlight
<table>
<thead>
<tr>
<th>Year</th>
<th>LCRP Research Contributions</th>
<th>Additional Information and Hyperlinks</th>
</tr>
</thead>
</table>
| 2013 | Dr. Charles Rudin examined the genetic and epigenetic changes that contribute to the shift from NSCLC to SCLC after the development of resistance, with hopes of developing better treatment strategies to overcome TKI resistance. | - [LCRP Research Highlight](#)